
Chi Han1, Jialiang Xu2, Manling Li2, Yi Fung1, Chenkai Sun1,
Nan Jiang1, Tarek Abdelzaher1, Heng Ji1

1UIUC, 2Stanford

LM-Steer: 
Word Embeddings Are
Steers for Language Models

ACL 2024, Outstanding Paper Award, https://arxiv.org/abs/2305.12798
First Author: https://glaciohound.github.io, chihan3@illinois.edu
Code Repo: https://github.com/Glaciohound/LM-Steer

https://arxiv.org/abs/2305.12798
https://glaciohound.github.io
https://github.com/Glaciohound/LM-Steer

Zero-Shot Extreme Length Generalization for Large Language Models
A Companion Piece: LM-Infinite

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

attended

masked

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

2

2

2

2

2

2

2

22

22

22

22

i

(a) Proposed Solution: LM-Infinite

i distance

(b) A Conceptual Model of Relative Positional Attention

0 1 2 3 i4 … … i - 1i - 2

essential for LLMs

starting
tokens middle tokens rear tokens

encode more
absolute
position

encode more
relative
position

less position-sensitive

distance
ceiling

-shaped
mask
Λ

NAACL 2024, Outstanding Paper, https://arxiv.org/abs/2308.16137

• Studies the OOD issues in length representation of LMs

• Provides a conceptual model of length representation

https://arxiv.org/abs/2308.16137

• applies to various modern LLMs without parameter updates

• Extreme generalization to 200M, with downstream task
improvements

LLaMA

Llama-2

GPT-J-6B

MPT-7B

MPT-7B + LM-Infinite

GPT-J-6B + LM-Infinite

Llama-2 + LM-Infinite

LLaMA + LM-Infinite

MPT-7B-Storywriter

Negative Log-Likelihood

Length

Zero-Shot Extreme Length Generalization for Large Language Models

NAACL 2024, Outstanding Paper, https://arxiv.org/abs/2308.16137

A Companion Piece: LM-Infinite

https://arxiv.org/abs/2308.16137

What Do Word Embeddings Embed?

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0

CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Mikolov, Tomáš, Wen-tau Yih, and Geoffrey Zweig. "Linguistic regularities in continuous space word representations." Proceedings of the 2013 conference of the north american
chapter of the association for computational linguistics: Human language technologies. 2013.
Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
Advances in neural information processing systems, 29.

(a) Analogical Relations (metric space)

Previous papers mostly focus on word-level interpretations

What Do Word Embeddings Embed?

Park, Sungjoon, JinYeong Bak, and Alice Oh. "Rotated word vector representations and their interpretability." Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing. 2017.

(a) SG word projected to {a1,a2} and visualization of the vectors in 300 dimensions

(b) Rotated word vectors in {aR
1 ,aR

2 } and visualization of the vectors in 300 dimensions

Figure 1: Overview of rotating word vectors dimensions. We plot (a) unrotated and (b) rotated skip-
gram word vectors in 2-D projected embedding space using PCA (left), and visualization of the vectors
in original 300 dimensional space (right). Colors of words indicates the meaning of countries (Red)
and positions (Blue). As in (b), after the dimensions are rotated, interpretability for each dimensions is
improved having meaning of countries and positions.

tor representations work well by revealing a hid-
den structure of the original word vectors. That is,
it is meaningful to transform the hard-to-interpret
dimensions of the pre-built word vectors, which
are widely used, to more interpretable vectors. We
also show that the rotated vectors retain their effec-
tiveness with respect to downstream tasks without
re-building the vector representations.

Our method can be applied to any type of word
vectors as a post-processing method such that it
does not require a large corpus to be trained. In
addition, it does not require additional number of
dimensions so it does not increase the complexity
of the model. Furthermore, we explore the charac-
teristics of the rotated word vectors.

2 Factor Rotation

We take the rotation algorithm from the ex-
ploratory factor analysis (EFA) conducted to ver-
ify the construct validity of the psychological scale
in development. For example, when validating a

scale measuring respondents’ latent factors, such
as “Engineering problem solving” and “Interest in
engineering”, items should be similar within a fac-
tor, and distinguished between factors. As shown
in Table 1, EFA projects every item into the latent
factor space as an unrotated factor loading matrix.
However, since it is unclear what the factor means,
factor rotation is applied to the matrix that pro-
duces the rotated factor loading matrix which en-
hances the interpretability of the dimensions (Os-
borne, 2015).

2.1 Rotating Factors

The rotation algorithm transforms factor loading
matrix to the simple structure which is much eas-
ier to interpret (Thurstone, 1947). It involves post-
multiplication of a p ⇥ m input matrix A by an
m ⇥ m square matrix T , to compute the rotated
matrix ⇤,

⇤ = AT (1)

402

(b) Meaningful Dimensions (linear Space)

“Position” dim →

“country” dim →

Previous papers mostly focus on word-level interpretations

What Do Word Embeddings Embed?
Previous papers mostly focus on word-level interpretations

Bolukbasi, T., Chang, K. W., Zou, J. Y., Saligrama, V., & Kalai, A. T. (2016). Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
Advances in neural information processing systems, 29.

(b) Meaningful Dimensions (linear Space)Figure 7: Selected words projected along two axes: x is a projection onto the difference between the
embeddings of the words he and she, and y is a direction learned in the embedding that captures gender
neutrality, with gender neutral words above the line and gender specific words below the line. Our hard
debiasing algorithm removes the gender pair associations for gender neutral words. In this figure, the words
above the horizontal line would all be collapsed to the vertical line.

����!
softball �

�����!
football) are shown in the table. Words such as receptionist, waitress and homemaker are closer to

softball than football, and the �’s between these words and softball is substantial (67%, 35%, 38%, respectively).
This suggests that the apparent similarity in the embeddings of these words to

����!
softball can be largely explained

by gender biases in the embedding. Similarly, businessman and maestro are closer to football and this can
also be attributed largely to indirect gender bias, with �’s of 31% and 42%, respectively.

6 Debiasing algorithms

The debiasing algorithms are defined in terms of sets of words rather than just pairs, for generality, so that
we can consider other biases such as racial or religious biases. We also assume that we have a set of words to
neutralize, which can come from a list or from the embedding as described in Section 7. (In many cases it
may be easier to list the gender specific words not to neutralize as this set can be much smaller.)

The first step, called Identify gender subspace, is to identify a direction (or, more generally, a subspace)
of the embedding that captures the bias. For the second step, we define two options: Neutralize and
Equalize or Soften. Neutralize ensures that gender neutral words are zero in the gender subspace.
Equalize perfectly equalizes sets of words outside the subspace and thereby enforces the property that any
neutral word is equidistant to all words in each equality set. For instance, if {grandmother, grandfather} and
{guy, gal} were two equality sets, then after equalization babysit would be equidistant to grandmother and
grandfather and also equidistant to gal and guy, but presumably closer to the grandparents and further from
the gal and guy. This is suitable for applications where one does not want any such pair to display any bias
with respect to neutral words.

The disadvantage of Equalize is that it removes certain distinctions that are valuable in certain applications.
For instance, one may wish a language model to assign a higher probability to the phrase to grandfather a
regulation) than to grandmother a regulation since grandfather has a meaning that grandmother does not –
equalizing the two removes this distinction. The Soften algorithm reduces the differences between these sets

11

gender neutral

gender-related

What Do Word Embeddings Embed?
Previous papers mostly focus on word-level interpretations

Shin, J., Madotto, A., & Fung, P. (2018). Interpreting word embeddings with eigenvector analysis. In 32nd Conference on Neural Information Processing Systems (NIPS 2018),
IRASL workshop (pp. 73-81).

(b) Meaningful Dimensions (linear Space)

(a) WSVD (b) WSGNS

Figure 2: Inverse participation ratios. The more red the dots are, more points are concentrated.

u1 u4 u7 u8 u14 u121

lastly molly determinants shyam famille jays
outset sally biochemical sanjeev vrier strikeouts

ostensibly toby intrinsic meera autour halladay
curiously maggie qualitative anupama naissance hitters
actuality valentine elucidated deepa rique buehrle
crucially jenny analytical rajkumar diteur batters

theirs tracy psychological manju octobre pitching
importantly lucy unger uday chambre phillies

thankfully carrie ehrlich chitra lettre rbis
regrettably elliot quantitative vinod campagne astros
ironically susie integrative archana jeune diamondbacks

aforementioned laurie extrinsic bhanu jours homers
paradoxically cooper nagel santosh septembre hitless

oftentimes jill methodologies rajesh enfance orioles
doubtless kitty exogenous ashok plon podsednik

unsurprisingly charlie underneath munna affaire baserunners
connelly shirley translational suman cembre hitter
merrick hannah kuhn komal royaume sox

invariably annie functional subhash propos pettitte
dunning elaine schweitzer usha juin vizquel

Transition First Names Science Indian Names French Baseball

Table 1: Top participants of eigenvectors (dimensions with highest magnitudes) of WSVD form
semantically coherent groups. u14 and u121 are eigenvectors with large IPR value, while the remaining
are corresponding eigenvectors of the largest eigenvalues.

mean value of 1/I
k divided by |V |, across all eigenvectors was 27.5% indicating that there exists

some sparse structure within the eigenvectors of WSVD. On the other hand, Figure 2b shows that
mean for vk was around 36%, meaning that column vectors of WSGNS are generally denser and less
structured. Such discrepancy in structural sparsity motivates us to analyze the eigenvectors of WSVD

in depth.

6 Analysis and Discussion

6.1 Column Space Analysis

Based on the results of previous sections, we further examine the top elements of the eigenvectors by
sorting their absolute values in decreasing order. Table 1 shows interesting results as the significant
dimensions or their corresponding “words" of each eigenvector, in general, form semantically or
syntactically coherent groups. For instance, u14 groups French words together and u121 shows

5

Word Embeddings in Causal LMs

x1 x2 x3 x4 x5 x6 x7

Input Word
Embeddings e′ x1

e′ x2
e′ x3

e′ x4
e′ x5

e′ x6
e′ x7

Contextual
Vectors

Output Word
Embeddings

Causal/Generative Language Model

= E(e1, e2, ⋯en)

c(x1) c(x1, x2) ⋯

P(X2 |x1) P(X3 |x1, x2) ⋯

Text

• LM’s optimization objective: generation, alignment,
etc.

• LMs learn word embeddings incidentally.

• But by no means randomly!

• What is the role of word embeddings?

What Do Word Embeddings Embed in LMs?
Revisit the Question

Projecting to Logits
Output Word Embeddings

Word Embeddings Are Steers for Language Models

Chi Han, Jialiang Xu, Manling Li, Yi Fung, Chenkai Sun,
Nan Jiang, Tarek Abdelzaher, Heng Ji
University of Illinois Urbana-Champaign

{chihan3, jx17, manling2, yifung2, chenkai5

nanjiang, zaher, hengji}@illinois.edu

Abstract

Language models (LMs) automatically learn
word embeddings during pre-training on lan-
guage corpora. Although word embeddings
are usually interpreted as feature vectors for
individual words, their roles in language model
generation remain underexplored. In this work,
we theoretically and empirically revisit out-
put word embeddings and find that their lin-
ear transformations are equivalent to steering
language model generation styles. We name
such steers LM-Steers and find them existing
in LMs of all sizes. It requires learning param-
eters equal to 0.2% of the original LMs’ size
for steering each style. On tasks such as lan-
guage model detoxification and sentiment con-
trol, LM-Steers can achieve comparable or su-
perior performance compared with state-of-the-
art controlled generation methods while main-
taining a better balance with generation qual-
ity. The learned LM-Steer serves as a lens in
text styles: it reveals that word embeddings are
interpretable when associated with language
model generations and can highlight text spans
that most indicate the style differences. An
LM-Steer is transferrable between different lan-
guage models by an explicit-form calculation.
One can also continuously steer LMs simply
by scaling the LM-Steer or compose multi-
ple LM-Steers by adding their transformations.
Our codes are publicly available at https:

//github.com/Glaciohound/LM-Steer. 1

1 Introduction

In recent years, language models (LMs) have sig-
nificantly advanced various natural language pro-
cessing (NLP) tasks such as machine translation,
sentiment analysis, schema induction, summariza-
tion, and sociocultural understanding (Brown et al.,
2020; Kojima et al.; Li et al., 2023b; Radford et al.,

1Please be advised that this paper contains potentially
controversial results and examples to some readers, included
solely for research purposes to explore model capabilities.

Language Model
Hidden Layers

Language Model
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model
Hidden Layers

Positively steered LM P�WNegatively steered LM P��W

e� v � (I � �W)ev e� v � ev e� v � (I + �W)ev

“My life is brilliant”“My life is boring” “My life is okay”

Figure 1: We find hidden steers in output word em-
beddings. By linearly transforming word embeddings,
language model generations are “steered” toward differ-
ent style polarity and levels.

2018; OpenAI, 2023; Fung et al., 2023, 2024).
Their output word embeddings are learned au-
tomatically to calculate word output likelihoods
during pre-training on language corpora. Typically,
the dot product c>ev between a computed context
vector and a learnable output word embedding ev

for token v is usually used as the word logit. The
word output probability is defined as the softmax
over all word logits:

P (v|c) =
exp(c>ev)P
u2V exp(c>eu)

, (1)

where V is the whole vocabulary. While being
a fundamental topic in natural language process-
ing, previous work on interpreting them is usually
focused at the word level, such as their semantic
information (Şenel et al., 2018), word senses (He-
witt et al., 2023), and analogical relations (Mikolov
et al., 2013; Park et al., 2017). However, as the
word embeddings are optimized for generation loss
during pre-training, the learned embedding space
should be closely associated with LMs’ generation
distributions. In this work, we propose to study the
roles that word embeddings play in LM generation,
which remains an underexplored topic, and ana-
lyze a simple while effective LM steering method
LM-Steer.

ar
X

iv
:2

30
5.

12
79

8v
2

 [c
s.C

L]
 6

 Ju
n

20
24

= E(e1, e2, ⋯en)

c(x1, ⋯, xi−1)

P(Xi |x1, ⋯, xi−1)

• An inner-product space

• resides in the same vector space of

• the direction of : relatedness direction

• the length of : how concentrated the distribution is

c, e V

c

c

Output Word Embeddings

logit(c, e) = c⊤e : ℝd × ℝd → ℝ

A similarity measure

• when can theoretically express any distribution

• when , compresses (embeds) words so they are inter-
related

• but, in what way?

k = |𝒱 |

k < |𝒱 |

Output Word Embeddings

E : [1..n] → ℝd

A Dimension Reduction

HMM as A Theoretical Framework

pinit h1 h2 h3 hL…
T T T T

v1 v2 v3 vL

B B B B

PHMM(v1, ⋯, vL; pinit) = p⊤
initT (

L−1

∏
i=1

diag(p(vi))T) p(vL)

Sequence Shift Word Embedding Transform≈

• Theorem (Informal): steering between text
distribution is associated with a linear
transformation on word embedding space
under assumptions.

pinit h1

T

v1

Bp′ init

ev

…

E WE
linear transformation

state
initialization
changes

…

equivalent to

An Intuitive Explanation
Word Embeddings Are Steers

Language Model
Hidden Layers

Language Model
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model
Hidden Layers

Positively steered LM PϵWNegatively steered LM P−ϵW

e′ v ← (I − ϵW)ev e′ v ← ev e′ v ← (I + ϵW)ev

“My life is brilliant”“My life is boring” “My life is okay”• Non-trivial claim as it connects word distributions and
sequence distributions

Theoretical Generality

https://miro.medium.com/v2/resize:fit:1200/1*5NhjY5OH8HKpi5oHuEMxTg.png

https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png

RNNs LSTMs

Transformers

https://miro.medium.com/v2/resize:fit:1200/1*5NhjY5OH8HKpi5oHuEMxTg.png
https://colah.github.io/posts/2015-08-Understanding-LSTMs/img/LSTM3-var-GRU.png

LM-Steer

Language Model
Hidden Layers

Language Model
Hidden Layers

steering on output word embeddings

Original LM P0

Language Model
Hidden Layers

Positively steered LM PϵWNegatively steered LM P−ϵW

e′ v ← (I − ϵW)ev e′ v ← ev e′ v ← (I + ϵW)ev

“My life is brilliant”“My life is boring” “My life is okay”

LM-Steer Broken Down
+ = ϵ ⋅ W E

Language Model
Hidden Layers

Output word
embedding E

The steering scale the steering matrix

“ ” “ ”

for each word:
e′ v = ev + ϵWev

W

ϵ W

Training & Inference

Language Model
Hidden Layers

output word
embeddings eo

adapted output word
embeddings e′ o+ = ϵWeo

original LM P0 “Steered” LM PϵW

Language Model
Hidden Layers

(a) LM-Steer overview (b) Training (c) Generation

PϵW

P−ϵW

objective:
maximize likelihood

objective:
maximize likelihood

positive
labelled texts

negative
labelled texts

step 1:
setting a “steer” value

ϵ = 3e − 3

step 2:
Plugging in and generate
my life is ____

brilliant

Model Backbone Toxicity# Fluency Diversity"
Size Max. toxicity Toxicity prob. Output ppl.# Dist-1 Dist-2 Dist-3

GPT-2 (original) 117M 0.527 0.520 25.45 0.58 0.85 0.85

PPLM (10%) 345M 0.520 0.518 32.58 0.58 0.86 0.86
DAPT 117M 0.428 0.360 31.21 0.57 0.84 0.84
GeDi 1.5B 0.363 0.217 60.03 0.62 0.84 0.83
DExpertsbase 117M 0.302 0.118 38.20 0.56 0.82 0.83
DExpertsmedium 345M 0.307 0.125 32.51 0.57 0.84 0.84
DExpertslarge 762M 0.314 0.128 32.41 0.58 0.84 0.84
PromptT5 780M 0.320 0.172 55.1 0.58 0.76 0.70
MuCoLa 762M 0.308 0.088 29.92 0.55 0.82 0.83
LoRA 762M 0.365 0.210 21.11 0.53 0.85 0.86
Soft-Blacklist 762M 0.270 0.154 18.28 0.53 0.81 0.83

LM-Steerbase 117M 0.296±0.018 0.129±0.012 36.87 0.54 0.86 0.86
LM-Steermedium 345M 0.215±0.015 0.059±0.029 43.56 0.56 0.83 0.84
LM-Steerlarge 762M 0.249±0.007 0.089±0.009 28.26 0.55 0.84 0.84

Table 1: On language model detoxification, LM-Steer achieves best performance. ± denotes standard deviation on
3 random seeds.

LM-Steer Tie LoRA LM-Steer Tie GPT-2 LM-Steer Tie DExperts

Detoxified 19.0 69.5 11.5 24.5 56.5 19.0 24.0 56.5 19.5
Fluent 21.0 69.0 10.0 21.0 57.5 21.5 25.0 52.0 23.0
Topical 18.0 69.5 12.5 32.0 47.0 21.0 32.0 56.5 11.5

Table 2: Human evaluation results by comparing with LoRA, GPT-2 and DExperts. LM-Steer wins out on most
metrics while being comparable to GPT-2 on fluency.

class-conditioned LM generation. MuCoLa (Ku-
mar et al., 2022) models the text generation as
an optimization problem regarding the classifier
scores. PromptT5 (Raffel et al., 2020) T5 is a
pre-trained LM optimized for prompt-based task
solving, and we use “Complete this sentence so
that it embodies a {positive/negative} sentiment:”
to prompt T5. LoRA (Hu et al., 2021a) trains
low-rank approximations of parameter matrices to
achieve parameter-efficient fine-tuning. Finally, we
compare with the soft blacklist baseline discussed
in Section 3.

Results and Analysis: We present the results
in Table 1. Despite the simple design, LM-Steer
achieves the best detoxification scores on both met-
rics, reducing Avg. max. toxicity by > 6% abso-
lute percentages. It is also noteworthy that LM-
Steer also demonstrates reasonable balance on flu-
ency (2nd lowest perplexity score) and diversity
(same-level Dist-k scores with baselines). Figure 3
further shows the detoxification versus baseline
size, where LM-Steer+{GPT2 family, Pythia fam-

ily, GPT-J and Llama-2} uniformly outperforms
baselines where of all sizes, where more numer-
ical results can be found in Appendix J and M.
Incorporation of LM-Steer with LoRA, instruction
following, and full embedding tuning are explored
in Appendix L, N and O, respectively.

Human Evaluation We compare LM-steer with
LoRA, DExperts, and GPT-2 in a pairwise manner
with human annotators. Specifically, we follow the
practice in DExperts and ask four student human
annotators to compare 50 generations from LM-
steer and the baseline from 3 perspectives: detoxi-
fication, fluency, and being topical to the prompt.
The results are as follows. We can see that LM-
steer is ranked significantly less toxic and more
topical than the baseline. It performs similarly to
DExperts and GPT-2 but better than LoRA in terms
of fluency.

4.2 Sentiment Control

We also evaluate LM-Steer’s performance on an ex-
tensively studied generation task controlled by sen-

Detoxification

our
model

fine-tuning
optimization-based

conditioned
generation

offseting logits

prompting

optimization-based

efficient finetuning

word blacklist

LM-Steer outperforms each baseline under similar model sizes

Main metric

• Across base model
sizes, LM-Steered GPT2
family, Pythia family,
GPT-J and Llama-2-7B
models (+) consistently
outperform other
baselines (□) on
detoxification.

Holistic Comparison
Detoxification

Base Model Parameters ()× 109

M
ax

im
um

 to
xi

ci
ty

Baselines
LM-Steered⊕

DAPT

DExperts

GPT2⊕

GPT-J-6B⊕SWB

GeDi

PPLM

PromptT5

MuCoLa

LoRA

Llama-2-7B⊕
Pythia⊕

0.15

0.25

0.35

0.45

0.55

0 1.75 3.5 5.25 7

Base Model Parameters ()× 109

M
ax

im
um

 to
xi

ci
ty

Baselines
LM-Steered⊕

DAPT

DExperts

GPT2⊕

GPT-J-6B⊕SWB

GeDi

PPLM

PromptT5

MuCoLa

LoRA

Llama-2-7B⊕
Pythia⊕

0.15

0.25

0.35

0.45

0.55

0 1.75 3.5 5.25 7

Pairwise Human Evaluation
Detoxification

Metrics

Pairwise Human Evaluation
Detoxification

Parameter
efficient tuning

Original
Model

Controlled
generationBaselines:

Pairwise Human Evaluation
Detoxification

Better than the baselines on 8 out of 9 tracks

Sentiment Control

• Despite being
simpler and
smaller

• LM-Steer gets the
1st metrics on the
positive sentiment
and 2nd to 3rd
place on the
negative
sentiment.

Target Model
Sentiment Positivity / % Fluency Diversity"

Positive Neutral Negative Output ppl.# Dist-1 Dist-2 Dist-3prompts prompts prompts

Positive"

LM-Steerlarge 90.70 41.23 41.20 0.46 0.78 0.83
LM-Steermedium 95.36 56.98 67.68 0.46 0.77 0.80

LM-Steerbase 90.46 57.26 54.38 0.47 0.78 0.81

Soft-Blacklist 86.40 25.64 99.46 0.42 0.76 0.81
LoRA 26.88 7.20 158.56 0.57 0.82 0.83

DExpertslarge 94.46 36.42 45.83 0.56 0.83 0.83
DExpertsmedium 94.31 33.20 43.19 0.56 0.83 0.83
DExpertssmall 94.57 31.64 42.08 0.56 0.83 0.84

DExperts (pos) 79.83 43.80 64.32 0.59 0.86 0.85
GeDi 86.01 26.80 58.41 0.57 0.80 0.79
DAPT 77.24 14.17 30.52 0.56 0.83 0.84

PPLM (10%) 52.68 8.72 142.11 0.62 0.86 0.85
PromptT5 68.12 15.41 37.3 0.58 0.78 0.72

GPT-2 (original) 99.08 50.02 0.00 29.28 0.58 0.84 0.84

Negative#

PromptT5 69.93 25.78 48.6 0.60 0.78 0.70
PPLM (10%) 89.74 39.05 181.78 0.63 0.87 0.86

DAPT 87.43 33.28 32.86 0.58 0.85 0.84
GeDi 39.57 8.73 84.11 0.63 0.84 0.82

DExperts (neg) 61.67 24.32 65.11 0.60 0.86 0.85
DExpertssmall 45.25 3.85 39.92 0.59 0.85 0.84

DExpertsmedium 40.21 3.79 43.47 0.59 0.85 0.84
DExpertslarge 35.99 3.77 45.91 0.60 0.84 0.83

LoRA 57.71 20.08 192.13 0.55 0.78 0.79
Soft-Blacklist 73.72 14.28 50.95 0.38 0.70 0.76

LM-Steerbase 57.26 10.12 51.37 0.49 0.77 0.79
LM-Steermedium 52.32 7.10 71.48 0.47 0.77 0.79
LM-Steerlarge 54.84 8.02 57.74 0.48 0.78 0.80

Table 3: Results on sentiment control task. The upper half displays a positive control task and requires a higher
positivity score and vice versa for the lower half. LM-Steer gets the best metrics on the positive side and 2nd to 3rd
places on the negative side despite being simpler and smaller. For backbone model sizes, please refer to Table 1.

timent. This ability can be found useful when tailor-
ing persuasive and emotionally appealing messages
to specific target audiences in marketing or adver-
tising or to create personalized and engaging user
experiences in chatbot systems.

Setting: We follow the setting in (Liu et al.,
2021) and use Stanford Sentiment Treebank (SST-
5) (Socher et al., 2013) as training data, where we
use texts with labels 1⇠2 as negative samples, and
those with 4⇠5 labels as positive samples. For eval-
uation, we use the HuggingFace’s sentiment classi-
fier (Wolf et al., 2020). The generation prompts are
a subset of the OpenWebText Corpus filtered by the
sentiment analysis classifier. Models are applied on
these prompts 25 times to generate up to 20 tokens.

We then measure the average percentage of posi-
tive generations for each prompt as the “Positivity”
score. Similar to the detoxification task, we use
5✏0 for positive sentiment and �5✏0 for negative
sentiment control.

Baselines: In addition to the baselines used in
detoxification, two variants of DExperts, DExperts
(pos) and DExperts (neg), which only use one of
the two classifiers for guiding generation, are also
listed.

Results: Table 3 presents the full results. LM-
Steer, despite a much simpler and smaller model,
takes 1st place on the positive side and 2nd or 3rd
place on the negative side and achieves a reasonable
balance on fluency and diversity.

Continuous Steering

Sentiment

Proportion

St
ee

r v
alu

e ϵ

Sentiment
Distribution
Space

sentiment(PϵW)

curves: maximal
likelihood beta-
distribution

Continuous Steering

uation, we use the HuggingFace’s sentiment clas-343

sifier (Wolf et al., 2020). The generation prompts344

are a subset of the OpenWebText Corpus filtered345

by the sentiment analysis classifier. Models are346

applied on these prompts for 25 times to generate347

up to 20 tokens. We then measure the average per-348

centage of positive generations for each prompt as349

the “Positivity” score. Similar to the detoxification350

task, we use 5✏0 for positive sentiment and �5✏0351

for negative sentiment control.352

Baselines: Besides the baselines used in detoxi-353

fication, two variants of DExperts: DExperts (pos)354

and DExperts (neg) which only use one of the two355

classifiers for guiding generation are also listed.356

Results: Table 3 presents the full results. LM-357

Steer, despite a much simpler and smaller model,358

takes 1st place on the positive side and 2nd or 3rd359

place on the negative side and achieves a reasonable360

balance on fluency and diversity.361

Steer Generation

-5e-3 What moron said that stupid comment.

-3e-3 What’s stupid is stupid, right?

-1e-3 What’s this? You think that your reli-
gion, your culture, your country are not
good enough?

0 What’s more, it makes for a fun, cheap,
and efficient way to improve the perfor-
mance of your car engine and to make
your driving that much safer.

1e-3 What’s more, it makes for a fun, cheap,
and efficient way to improve the perfor-
mance of your car engine and motor.

3e-3 What’s on your mind? What’s on your
mind?

5e-3 What’s on Netflix? If you can’t figure
out what’s being watched on Netflix,
you need to figure out what are people
watching!

Table 5: LM-Steer continuously steers GPT2-Large
generation from toxic to non-toxic. Both the number
and intensity of toxic words decrease with increased
steer value.

4.3 Continuous and Compositional Control362

The conceptually simple design of LM-Steer makes363

it an architecture-agnostic plug-in to diverse lan-364

guage models. We demonstrate that LM-Steer365

maintains a linearity guarantee, which enables con-366

tinuous and compositional control. More specifi- 367

cally, our model allows for interpolation between 368

two steer values by simply using an intermediate 369

steer value. Moreover, if two LM-Steers W1,W2 370

are learned, their effect can be combined by decod- 371

ing with P✏(W1+W2). 372

In Figure 4a we plot the distribution shift when 373

adjusting sentiment steer ✏. We also curve the max- 374

imal likelihood estimated Beta distribution. In Fig- 375

ure 4b we observe that LM-Steer can composition- 376

ally control sentiment and toxicity, even though 377

there exists a mutual influence between these two 378

factors (e.g., a negative sentiment might also lead 379

to more toxic comments). Table 5 also provides an 380

example of how the generated sentence is continu- 381

ously steered from toxic to non-toxic, demonstrat- 382

ing a simple fine-grained control on the toxicity 383

level. When the steer value increases from negative 384

to positive, both the number and the intensity of 385

toxic words (bolded in the table) decrease. 386

4.4 Efficiency 387

Thanks to its simple design, LM-Steer enjoys effi- 388

ciency in multiple perspectives. We vary the detox- 389

ification dataset size from 30 to 10k and measure 390

LM-Steer’s performance in Figure 5(b). We see 391

that as few as 30 data points still enable LM-Steer 392

to achieve high detoxification scores (0.322). When 393

dataset size exceeds 3k LM-Steer acquires a good 394

balance between detoxification and generation qual- 395

ity. We also show decoding time and parameter 396

efficiency in Table 4, where our model only uses 397

1% of the baseline’s learnabel parameter size and 398

uses a low computation overhead during decoding. 399

5 LM-Steers Connects Word Embeddings 400

with Texts 401

5.1 Interpreting Word Embeddings 402

LM-Steer provides a lens on how word embeddings 403

correlate with LM word embeddings: what word 404

dimensions contribute to or contrast to a specific 405

style. In the detoxification experiment, we conduct 406

an SVD decomposition of the learned W . Among 407

S, V,D, the D component can be interpreted as a 408

ranked list of the most “magnified” row dimensions 409

in the transformation W . We then take its first 9 410

rows, and list the most influenced words in Table 6. 411

Dimensions 2, 4, and 6 are filtered out as they only 412

match non-English tokens. Although offensive to 413

read, this table helps us understand what kind of 414

words are most related to toxicity and thus sup- 415

7

word toxicity level # toxic phrases
2
2
1

0

0

0

0

“moron”, “stupid”
“stupid”
“not good enough”

—

—

—

—

Compositional Steering

LM-Steer 1:

LM-Steer 2:

Combined LM-Steer:

Pϵ1W1

Pϵ2W2

Pϵ1W1+ϵ2W2

Compositional Steering

To

xic
ity

 co
ntr

ol

Toxicity

Compositional Steering

Sentiment control

negative
sentiment
positive
sentiment

Compositional Steering

Sentiment control

negative
sentiment
positive
sentiment

To
xic

ity
 co

ntr
ol

Toxicity

Interesting
entanglement
between steering
dimensions

Transferring to Another LM

Two transfer to another set of word embeddings:

Assuming an approximate linear transform

The equivalent steer term is

E → E′

E ≈ HE′ , c ≈ Hc′

Δlogit = c⊤We ≈ c′ ⊤H⊤WHe′

Δlogit(c, e) = ϵc⊤We

LM-Steer defines a bilinear form on the shared space of and c e

: ℝd × ℝd → ℝ

transferred LM-Steer!

Transferring to Another LM

0.2

0.275

0.35

0.425

0.5

gpt2 gpt2-medium gpt2-xl gpt-j-6b

Transferred

Avg. Max. Toxicity ()↓

Original
Trained

(124M) (355M) (1.5B) (2.7B)

transfers about half of the detoxification capability

• training only 0.9% of LM training parameters

• Marginal time overhead. Can be further reduced to 1.0 if the
steering value is fixed.ϵ

Computational Efficiency
(a) Continuous control on sentiment with ✏ in �5✏0 ⇠ 5✏0
results in a sentiment distribution shift. Color indicates
sentiment and height indicates frequency/density.

(b) Compositional control sentiment ranging in �5✏0 ⇠
5✏0 and toxicity in 0 ⇠ 5✏0. Color means sentiment and
height is toxicity.

Figure 4: Continuous and compositional control using LM-Steer.

LM-Steer DAPT GeDi CTRL PPLM DExpert MuCoLa LoRA

Parameters 1.6M 355M 355M 355M 124M 355M 898M 18M
Speed Ratio 1.24 1.00 2.94 3.79 270.11 1.98 24.03 1.00

Table 4: Decoding time and learnable parameter efficiency. Time efficiency is measured by relative decoding time
compared to the base language model. The best numbers are bolded.

4.3 Continuous and Compositional Control
The conceptually simple design of LM-Steer makes
it an architecture-agnostic plug-in to diverse lan-
guage models. We demonstrate that LM-Steer
maintains a linearity guarantee, which enables con-
tinuous and compositional control. More specifi-
cally, our model allows for interpolation and extrap-
olation on the steering spectrum by simply interpo-
lating and extrapolating the steering value. More-
over, if two LM-Steers ✏1W1, ✏2W2 are learned on
potentially different tasks, their effect can be com-
bined by decoding with P✏1W1+✏2W2 .

In Figure 4a, we plot the distribution shift when
adjusting sentiment steer ✏. We also curve the max-
imal likelihood estimated Beta distribution. In Fig-
ure 4b, we observe that LM-Steer can composition-
ally control sentiment and toxicity, even though
there exists a mutual influence between these two
factors (e.g., a negative sentiment might also lead
to more toxic comments). Table 5 also provides an
example of how the generated sentence is continu-
ously steered from toxic to non-toxic, demonstrat-
ing a simple fine-grained control on the toxicity
level. When the steering value increases from neg-
ative to positive, both the number and the intensity

of toxic words (bolded in the table) decrease.

4.4 Efficiency
Thanks to its simple design, LM-Steer enjoys effi-
ciency in multiple perspectives. We vary the detox-
ification dataset size from 30 to 10k and measure
LM-Steer’s performance in Figure 5(b). We see
that as few as 30 data points still enable LM-Steer
to achieve high detoxification scores (0.322). When
dataset size exceeds 3k LM-Steer acquires a good
balance between detoxification and generation qual-
ity. We also show decoding time and parameter
efficiency in Table 4, where our model only uses
1% of the baseline’s learnable parameter size and
uses a low computation overhead during decoding.

5 LM-Steers Connect Word Embeddings
with the Text Distribution

In previous sections, LM-Steer revealed the hidden
biases encoded in the automatically learned word
embeddings of LMs. This section provides an alter-
native perspective, where these hidden biases serve
as a lens for interpreting the connection between
word embeddings and the generation distribution
of LMs. Section 5.1 demonstrates how LM-Steer

Data Efficiency

30 100 300 1k 3k 10k full
0.1

1

10

100

1000

0.2

0.28

0.36

Perplexity Toxicity

0.44

0.52

data

• Automatically
highlighting text spans
most related to a
distribution.

• Example: toxic word
highlighting by learning
detoxification

Highlighting Keywords

Dim. Matched Words

0 mor, bigot, Stupid, retarded, coward, stupid, loser, clown, dumb, Dumb, losers, stupidity,
garbage , idiots, fools, idiot, lame

1 stupid, idiot, Stupid, idiots, jerk, pathetic, suck, buff, stupidity, mor, damn, ignorant, fools,
dumb , disgusting , damned, narcissistic, troll

3 idiot, godd, damn,

5 Balk, lur, looms, hides, shadows, Whites, slippery, winds

7 bullshit, fiat, shit, lies, injust, manipulation

8 disabled, inactive, whip, emo, partisan, spew, bombed, disconnected, gun, failing, Republi-
cans , defeated, Jeb, blowing , bombard, ineffective, reload, destructive, flo, blown

9 winners, upside

Table 6: Word embedding dimensions that are most influenced by LM-Steer on detoxification task.

There’s another controversial Hollywood racial
decision that Stacey Dash is sinking her teeth into.

The UFC champ then suggested Justino is a
longtime PED user with her most d**ning com-
ments.

But I really have a question for you: Why would
I go on a game show and play into the bulls**t
allowing myself to be ranked by some fake com-
petition?

I think sexism prevents this from being a real
win for fat people.

If they want to be fair and non
hypocritical idiots they should.

Table 7: Toxic sentences with toxic keywords high-
lighted by LM-Steer after training detoxification on
GPT2-Large.

5.3 Transfering LM-Steer Between Models
A much-desired property of LM-Steer, because of
its theoretical soundness, is its transferability to
other language models. Details and derivations of
LM-Steer transfer are in Appendix F. Intuitively
speaking, the original logit c>ev can be understood
as a similarity or matching metric between context
vector c and word embedding ev. In LM-Steer,
the logit is offset by ✏ times c

>
Wev, which is

also a bilinear similarity. To transform this LM-
Steer to another language model, we need to map
the context vectors and word embeddings between
word embedding spaces ev = He

0
v

c
>
Wev = (Hc

0)>W (He
0
v) = c

0>(H>
WH)e0v

(3)

We work by first identifying a linear mapping H

from target LM word embeddings to source LM
word embeddings. Then, the matrix H

>
WH can

be inserted into the target LM as LM-Steer. This is
motivated by prior work on the linear mapping be-
tween word embeddings from different models (Li
et al., 2021). Finally, the calculated steering matrix
is directly applied to the target LM. Figure 5(a)
shows the performance after we transfer the LM-
Steer learned on GPT2-large to LMs of other sizes,
ranging from gpt2 (124M) to GPT-J-6B (6B). We
can see a uniform improvement in transferred LM-
Steers, with GPT2 and GPT2-medium getting sim-
ilar scores (0.307 and 0.308) to the best baseline
(DExperts).

6 Conclusions
In this work, we discover the prevalent phe-
nomenon of word embeddings containing steers for
language model generation. We demonstrate the
promise and efficacy of LM-Steer, a theoretically
grounded, simple, and lightweight approach for the
steering of generative language models. LM-Steer
can model various styles and achieve comparable
or superior performance to baselines in language
model detoxification and generation control. LM-
Steer also allows for continuous and compositional
control and can be transferred to other language
models. More importantly, it provides an inter-
pretation of how word embeddings interplay with
language model generation. So far, we have only
studied output word embeddings, so it is intriguing
to ask whether similar phenomena apply to other
components, such as input word embeddings and
hidden layers.

• Motivation: what words are more likely in instead of ?

• Objective: looking for the text spans with the maximal sum of
log-likelihood differences

• Inputs: sequences and , #spans to look for , max span
length

• Algorithm: dynamic programming

P0 PW

P0 PW n
l

Highlighting Keywords

There’s another controversial Hollywood racial decision that …

P0

PϵW

A Probe on the Word Embedding Space

SVD decomposition reveal words that are mostly related to a
learned LM-Steer

Δlogit(c, e) = ϵc⊤We = ϵc⊤UΣVe

Each row in right matrix looks for a dimension in the
word embedding space, with decreasing significance

v⊤
i V

σi

SVD decomposition

= ϵ∑
i

σi(c⊤ui)(v⊤
i e)

A Probe on the Word Embedding Space

(Some dimensions were omitted as they match non-English words)

personal
abuses

political

curses

critiques

• Comparing with input word embeddings: what is related and
what is different?

• Are other contextual representations steerable? Any detailed
analysis?

• “Extracting Latent Steering Vectors from Pretrained
Language Models” https://arxiv.org/pdf/2205.05124

• Going beyond linear transformation

• Calling for a better theoretical framework for LMs

Future Work

https://arxiv.org/pdf/2205.05124

